SECURITY 2015 23. ročník konference o bezpečnosti v ICT

Biometrics as Signal Detection Problem

Tomáš Rosa Raiffeisenbank, a.s.

Signals Primer

- Let a signal be any detectable space-time varying quantity conveying information about physical phenomena.
- Signal detection is then an ability to discern between information-bearing patterns (signals) and random patterns (noise) that distract from the information.

Match Score

- It would be nice if we had a simple truefalse result.
 - As in conventional crypto.
 - But we cannot...
- All we have is a value of random variable X that follows two conditional distributions.
 - f(x | impostor)
 - f(x | genuine)

Base "Camel" Graph

Signal Detection Approach

False Match Rate

False Non-Match Rate

Error Distribution Functions

Receiver Operating Characteristics

Detection Error Trade-Off

ISO/IEC 19795

- Performance test methodologies for different life-cycle phases:
 - technology evaluation
 - scenario evaluation
 - operational evaluation
- We get <u>comparable results</u> with plausible <u>confidence intervals</u>.

Bunch of Parameters

- False Match Rate / False Non-Match Rate
 - attempt oriented
- False Acceptance Rate / False Rejection Rate
 - transactional version of FMR/FNMR
- Failure To Acquire
- Failure To Enroll
 - both attempt and txn-oriented versions

Biometric Data Mining

- In any life-cycle phase, we shall gather as much data as we can to estimate the performance or check we are still operating in expected margins.
- Anomalies may indicate a component malfunction or even a fraud.
- Again, be careful about confidence.
- Misleading statistics can be worse than none!

DET Estimation Simulation

Confidence Intervals?!

Any Confidence, Yet?

Fair Confidence

We Can be Proud

Just a Dream...

Biometric Menagerie

- To further complicate biometrics testing, those score distributions are usually *not* person-independent.
 - That means the performance is *not* the same for all people.
- There are *plenty of anomalies* out there we shall be aware of to interpret the system behaviour correctly.

Sheep: An Ordinary User

Goat: Problematic FNMR

Dove: Excellent User

Chameleon: Excellent Scores, Anyway(!)

Secret Files on Biometrics

BIO Brute Force Attack

- Randomly generate plausible circa 1/FMR samples and put them to the test.
 - Also termed "Zero-Effort", denoting that the attacker makes no special effort to imitate the original person characteristic.
- Synthetic samples generation is quite feasible today.

Svetlana N. Yanushkevich Adrian Stoica Vlad P. Shmerko Denis V. Popel

Taylor & Francis

Cryptanalysis-Like Attacks

- Masquerade attacks, can be a variant of "Hill-Climbing" denoting the attacker iteratively improves the BIO sample data based on:
 - scoring feedback (side channels)
 - stolen template (pre-image attacks)
 - independent template trained from intercepted BIO samples (correlation attacks)
 - known scoring anomaly (differential analysis)
 - implementation faults (general hacking)

Spoofing

- The process of defeating a biometric system through the introduction of fake biometric samples.
 - (Schuckers, Adler et al., 2010)
- Particular modus operandi on how to deploy the attacking data vectors.
 - Can be seen as being orthogonal to the aforementioned ways of gaining fake samples.

Sensor-Bypass Attacks

- Do not expose API service for unrestricted automated sample verification!
 - Recall the zero-effort attack complexity is often trivial.

 Furthermore, masquerade attacks can shift FMR significantly.

Conversion Attack Example

Kinnunen et al., ICASSP 2012

Reporting Attack Impact

Kinnunen et al., ICASSP 2012

Artificial Signals Impact

Alegre et al., EUSIPCO 2012-13

- Hill-Climbing attack based on the Uphill Simplex algorithm and its application to signature verification
 - Gomez-Barrero, M., Galbally, J., Fierrez, J., and Garcia, J.-O. at BioID 2011

FMR 0-effort	ф(#trials) 0-effort	FMR' US masq.	ф(#iters) US masq.
0.05%	2 000	91.76%	1 556
0.01%	10 000	89.58%	1 678
0.0025%	40 000	87.82%	1 805

18. února 2015

Subspace Convergence Illustrated

X-talk Signal Leakage

- Furthermore, there is a certain link in between online (sign-pad made) and offline (pen-and-paper made) signatures.
 - Btw., we also hope to exploit this link should it come to a trial.
 - On the other hand, the amount of information being cross-transferred in between these two signal forms is yet to be discovered!

PDF Signature Leakage

- When signing a PDF using online signature data, we often put a human readable picture into the PDF annotation.
 - This is just to make the technology more user-friendly.
- This is, however, usually an offline plaintext projection of the (encrypted) online signature data.
 - How much information is leaking this way?

Offline Projection Example

Offline Signal Brief - There *is* Something!

ISO/IEC 24745 Requirements

Renewability

- allows multiple independent biometric references created ad hoc
- a particular leaked template does not compromise the other ones (provably!)

Revocability

- user can revoke the ability of being successfully verified by a particular template from now on
- Biocryptography is an effective way on how to achieve these goals.

Biometric Cryptography?

Back To the Origin

Is It Enough?

- Template protection in contemporary systems is often quite questionable (*to be polite*).
- On the other hand, is it the only one problem?
 - No. We shall not push the concept of bio-keys too hard anyway.

Bio-Skimming

- Once biometric systems become ubiquitous, this will be a fruitful attack vector.
 - Attackers use a fake sensor (or hack into an original one) to skim the "bio-master-key".
 - At the end of the day, how many eyes, fingers, faces, vocal tracts (etc.) do we have?
 - It is like having few master-keys for a whole life.
 - Furthermore, we prove the master-key possession by simply handing it over to almost any device that asks so (again, again, ...and again).

Spoofing Still Matters!

- That said, liveness detection will be always important!
 - Remember, biometrics is a signal detection.
 - It all works as long as we can assume the signal is coming from a particular human being!
 - Apparently, the biometric signal detector output shall be just one out of many inputs into an authentication process (itself being another multidimensional signal detection problem).

Tamper-Resistant Sensor

- It signs the biometric signal samples with its private key to indicate it already has sampled that signal from a living individual.
 - Furthermore, the sample shall be then processed as soon as possible.
 - Otherwise, we have to mitigate the risk of a sensor compromise in the intermediate time by a further time-stamping: Long Term Validation of bio-samples.
 - This concept is all too often neglected in the emerging handwritten signature biometrics!

Anyway, do the Pentest!

Conclusion

- We shall require ISO 19795 methodology during biometric application selection, comparison, and operation testing.
- Use an independent penetration test to verify:
 - zero-effort attack complexity
 - beware of automated APIs!
 - masquerade attacks
 - spoofing possibilities
 - template security
 - system security in general
 - threshold settings, template tampering

SECURITY 2015

23. ročník konference o bezpečnosti v ICT

Děkujeme za pozornost.

Tomáš Rosa Raiffeisenbank, a.s. tomas."my_last_name"@rb.cz

SECURITY 2015

23. ročník konference o bezpečnosti v ICT

Panelová diskuse

Biometrie

