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| Speaker Recognition Tasks I

Verification ldentification
Is this Homer’s voice? Whose voice is this?

Diarization (Segmentation and Clustering)
Where are speaker changes? Which segments are from the same speaker?
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| Basic structure of the system — Likelihood ratio I

Speaker detection decision approaches have roots in signal
detection theory

« 2 class Hypothesis test
HO: the speaker is not the target speaker
H1: the speaker is the target speaker
 Statistic computed on test utterance S as likelihood ratio

Likelihood S came from speaker model
Likelihood S did not come from speaker model

S A>0 accept
W A<0 reject

A = log
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| Phases of Speaker Detection System I

Two distinct phases to any speaker detection system

Training (enrollment) phase
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| Does the system work well ? I

e We need some (lots of) data — pairs model speaker — test
speaker.

o Target-trials (test speaker = model speaker)
e Non-target-trials (test speaker # model speaker)

e We run them thru the system and record the scores
* We need to set the detection
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| True accept I
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| True reject I
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| False accept I
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| False reject I
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| DET — Detection Error Tradeoff I. I

The performance of a detection system is measure of the trade-
off between these two errors — is controlled by adjustment of the

decision threshold

Pr(miss|thr)=
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| DET — Detection Error Tradeoff II. I

Equal Error Rate
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| A simple Speaker verification system I

Likelihood S came from speaker model
Likelihood S did not come from speaker model

v [

A =log

A>0 accept

A<0 reject
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| Spectral features - MFCC I
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| MAP adaptation — How to create speaker model I

e Target speaker data

« UBM model - 2 Gaussians
 Speaker model adapted from UBM
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| Channel/session effects I

The largest challenge to practical use of speaker
detection systems is channel/session variability

« Variability — refers to changes in channel between
enrolment and successive detection attempts

 Channel/session effects encompasses several factors
* The microphones
Carbon-button, electret, hands-free, array, ...
« The acoustic environment
Office, car, airport, street, restaurant, ...
* The transmission channel
Landline, cellular, VolIP,...
* The speaker him/herself
emotion state, language, content, politeness, stress, alcohol
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| Years of SRE R&D fighting the variability ...

Feature domain Model domain

Front-end

* Noise
removal

e Tone
removal

processing

* Cepstral mea
subtraction

* RASTA filterin

* Mean & varian
normalization

 Feature warpi

Target model

Background
model

Score domain

» Speaker Model
Synthesis

* Eigenchannel
compensation

«Joint Factor
Analysis

* Nuisance Attribute
Projection

LR score
normalization

e Z-nOorm
e T-norm

* ZT-norm
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session variability
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| Inter-session variability compensation I

Target speaker model Test data

° . For recognition, move
UM both models along the
° high inter-session
variability direction(s)
to fit well the test data
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| Current state-of-the-art

e Low-dimensional representation of whole recordings

e i-Vectors (for R&D), Voiceprints (for business)

<
Projection
parameters
feature collection of
extraction UBM statistics

Norm.
parameters

Projection
parameters

projection to extraction of | user
iVectors spk info. - LDA [ normalization

*WW voiceprint

o Allows for very fast scoring.

voiceprint length dep. score

Calibration
parameters

Model
parameters

WCCN+PLDA piecewise LR Logistic func.

trainable by user
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| What to expect I. I

e Works very nicely for long telephone recordings (EER
~2%) — multiple successes in NIST evaluations.

e Examples ...

Train on Multiple Segments, Test on Telephone with No Added Nc¢
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| What to expect II. I

e Noise, varying communication channels, short
recordings (10s) still a problem — DARPA RATS

program
e Examples ...
fa@miss10% miss@fal.5% EER
5.17 28.26 7.26
6.56 30.86 8.18
6.92 32.26 8.31
8.81 33.73 0.22
8.42 33.88 0.18
8.74 35.43 9.37
7.77 33.70 8.79
7.91 33.34 8.89
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| Comparison with human performance |

e For known voices, humans are unbeatable.

e For unknown ones, machines are superior (especially
for unfamiliar |anguage5 e e
and environments...) |
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CRAIG S. GREENBERG, ALVIN F. MARTIN,
MARK A. PRZYBOCKI: Human Assisted
Speaker Recognition, NIST, INFORMATION
TECHNOLOGY LABORATORY, INFORMATION
ACCESS DIVISION, 2012.
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| SRE — user data I

e The performance of the SRE system crucially depends
on how the training data is close to the deployment.

e UBM — needs lots (100s of hours) of unannotated data,
not very sensitive.

e \oicePrint extractor — dtto.

e Scoring done by PLDA
e Voice-prints with speaker labels (2, B, C, ..) needed
e Even 50 speakers help to increase the accuracy by 30%.

e It might be problematic to collect even these 50
speakers (if possible on different communication
channels...)

e Work running on unsupervised adaptation on
unannotated data.
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| The charm of voice-prints

e Allowing for transfer of speaker identities
e without giving out the original WAV
* Without possibility to reconstruct what was said.

Projection
parameters

Norm.
parameters

feature collection of | { projection to extraction of | user
extraction UBM statistics iVectors spk info. - LDA [ normalization
,*,W W <content No content> i

Opening a range of opportunities for
e Cooperation between customers

e Cooperation with R&D teams.

e Standardization started !

Projection
parameters

voiceprint
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| Speaker Recognition Applications
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| Speech Modalities |

Application dictates different speech modalities

Text-dependent Text-independent

e Recognition system knows e Recognition system does not
text spoken by person know text spoken by person

e Example: fixed or e Example: User selected
prompted phrases phrases, conversational speech

e Used for applications with o Used for applications with less
strong control over user or no control over user

e Knowledge of spoken text e More flexible system but more
can improve system difficult problem
performance e Speech recognition can provide

knowledge of spoken text
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| Impresonation I

e Impostor modifies his/her voice to sound as the
genuine speaker.

e Good for humans, systems almost insensitive
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| Replay attack I

e presenting recorded speech data from the genuine
speaker

e Easy due to broad availability of high quality recording
and playback devices (smartphones)

e Very difficult defense

o Text-dependent
systems.

Illustration from Spoofing and countermeasures for speaker veiafion: a survey, Zhizheng Wu, Nicholas
Evans, Tomi Kinnunen, Junichi Yamagishi, Federico Alegre, Haizhou Li, Speech Communication, Feb 2015
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| Speech synthesis I

e speech synthesis systems can nowadays be modified to
the voice of a particular speaker and used to attack
even text-dependent systems

e Research works aiming at the detection of artificial
speech, to the best of our knowledge, nothing done in
production systems.

o Still requires speech processing skills but there’s a
“democratization” of know-how and tools...
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| Voice modification I

e modifying source impostor’s voice to genuine speaker’s
voice allowing for “speaking as your mother in law”

e Same as for speech synthesis:
o Research works aiming at the detection of artificial
speech, to the best of our knowledge, nothing done in
production systems.

e Still requires speech processing skills but there’s a
“democratization” of know-how and tools...
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| Summary of attacks I

Spoofing Accessibility Effectiveness (risk) Countermeasure
technique (practicality) Text-independent | Text-dependent availability
Impersonation Low Low Low Non-existent
Replay High High Low to high Low
Speech synthesis | Medium to high | High High Medium
Voice conversion | Medium to high | High High Medium

Recommended reading:

Zhizheng Wu, Nicholas Evans, Tomi Kinnunen, Junichi Yamagishi, Federico Alegre,
Haizhou Li: Spoofing and countermeasures for speaker verification: a survey,
Speech Communication, Feb 2015.
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| Commercial vendors I

e Nuance/Loquendo http://www.nuance.com/for-
business/customer-service-solutions/voice-
biometrics/index.htm

e Agnitio http://www.agnitio-
corp.com/products/commercial/voice-authentication

e Speech Technology Center
http://speechpro.com/product/voice-
authentication/voicekey

e VoiceTrust http://www.voicetrust.com/
e Phonexia http://phonexia.com/technologies/sid
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| Notes on commercial systems I

o All mentioned companies have state-of-the-art
technology

e all of them are the best on the market!

e When acquiring Voice Biometry, you should ask:

1. Where does the core engine come from ? From you or
over 3 re-sellers ?

2. Can we obtain a functioning trial/demo version to
be evaluated by ourselves on our data ?

3. How easily can we adapt the system on our data ?
4. Plus the usual questions on integration, support, price

e Good vendors will tell you what their engines are based
on, everything is published !
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| Voice biometry summary I

= Non-invasive, naturally available, no additional devices
or hassle for users.

< Can operate in the background (during the call to the
agent)

= Can be adapted to target conditions.

= Voice is spreading in the industry (SIRI, etc)

$ Can’t be recommended as the only modality for
authentication

$ No established evaluation methodology
$ Attacks yet to come, tools are around.

OveéFovani osob pomoci hlasu Security, Praha, 2015 I 44



SECURITY 2015

23. ro¢nik konference o bezpecnosti v ICT

Dekujeme za pozornost.

Honza Cernocky
FIT VUT v Brnée

cernocky@fit.vutbr.cz

http://speech.fit.vutbr.cz



mailto:cernocky@fit.vutbr.cz
http://speech.fit.vutbr.cz/

