
Discovering PIN Prints
In Mobile Applications

Tomáš Rosa

Raiffeisenbank, a.s.

ATA Scenario

20. února 2013

Definition (ATA). Let the After-Theft Attack (ATA) be
any attacking scenario that assumes the attacker has
unlimited physical access to the user’s smart phone.

� Imagine somebody steals your mobile phone…

� Despite being really obvious threat, it is often neglected
in contemporary applications.

� By a robbery, the attacker can even get access to
unlocked screen or a synced computer, hence receiving
another considerable favor!

Forensic Techniques Lessons

� Hackers conferences are not the only place to look for an
inspiration.

� There are also forensic experts who publish very interesting
results.

� Actually, they often take hacking techniques and refine them to
another level of maturity.

� The main purpose is to prosecute criminals, of course.

� But it is just a question of who is holding the gun…

� Anyway, security experts shall definitely consider looking into forensic
publications, at least time to time.

20. února 2013

Memento ATA

� We shall assume that:

� once having unlimited physical access to the mobile
device,

� the attacker can read any binary data stored in its FLASH
memory.

� This also applies to certain encryption keys!

� Despite not being trivial, we shall further assume this
also applies to the content of the volatile RAM.

20. února 2013

PIN Prints

� This can be any direct or indirect function value that:

� once gained by the attacker,

� leads to a successful brute force attack on the PIN,

� under the particular attack scenario.

� Principally, the same applies to general passwords,
too.

� However, we can mitigate the risk by enforcing strong
password policy here.

20. února 2013

No PIN Prints Postulate

20. února 2013

� Postulate (NP3). In the time the application

process is closed (from the client

perspective)…

� …there is not enough information stored in the

whole mobile device that would allow an attacker

to disclose the client’s PIN successfully.

Once Upon a Time

� There was a PKI based approach…

� …and there was RSA private key encrypted by a derivative
of a decimal PIN.

� First factor: mobile device with the encrypted RSA key

� Second factor: the PIN

� Idea: gorgeous PKI and RSA take care about the rest…

20. února 2013

Correct PIN

� So, this was the plaintext obtained from the
ciphertext under the correct PIN value:

RSAPrivateKey ::= SEQUENCE {

version Version,

modulus INTEGER, -- N, N = p*q*other_factors_if_any

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d, d*e ≡ 1 (mod λ(N))

prime1 INTEGER, -- p, p | N

prime2 INTEGER, -- q, q | N

exponent1 INTEGER, -- dp, dp = d mod (p – 1)

exponent2 INTEGER, -- dq, dq = d mod (q – 1)

coefficient INTEGER, -- qinv, qinv*q ≡ 1 (mod p)

-- …

}

20. února 2013

Incorrect PIN

� The plaintext obtained for a wrong PIN can be

considered as a pseudorandom sequence.

� The ASN.1 format rules as well as the algebraic

relations are probably corrupted.

� PIN searching hint – do you remember TV tuning?

Just turn the tunning knob until you get any

plausible picture and sound…

20. února 2013

NP3 Failure

� We have seen that…

� …according to PKCS#1, there is a huge redundancy

based on the ASN.1 structure syntax.

� …furthermore, there is a terrible amount of

algebraic-based redundancy.

� So, the decimal PIN was in fact packed

together with the encrypted key store.

� …as a bonus gift to the diligent attacker!

20. února 2013

Another Example

� This time, there was a PIN-encrypted

symmetric authentication key.

� Great, there is a chance to eliminate the algebraic

redundancy!

� First factor: device with the encrypted auth. key

� Second factor: the PIN

� Idea: HOTP and OCRA-based verification of the

symmetric key (with implicit PIN check)

20. února 2013

Looking Inside

� PIN key derivation

K = SHA-1(SaltA || PIN || SaltB)[0..15],

where SaltA,B are device-dependent static strings.

� We shall assume SaltA,B is accessible under ATA.

� Anyway, this is OK.

� HOTP/OCRA key generation and encryption

� (P)RNG used for key generation.

� No usable algebraic redundancy inside. OK.

� Encrypted using AES-ECBK.

� OK. But… wait a minute – what is the padding?

20. února 2013

Randomized Padding Structure

� L-byte message: M = M1 || M2 || … || ML

� Pad to N bytes: OT = M || PS1 || … || PSN-L

� Padding string construction:

For each PSi, 1 ≤ i ≤ N-L, choose j ∈R {1, 2, …, L}

randomly, and set PSi = Mj.

In other words, the padding string consists of

randomly indexed bytes from the original message.

20. února 2013

Incorrect PIN

� Again, the obtained plaintext OT’ can be

regarded as a pseudorandom sequence.

� The better the encryption algorithm is, the closer

to ideal random noise OT’ is… (sad, but true).

� The probability of accidentally correct padding

structure can be estimated as

ppadding < (L/256)N-L.

Proof. PSi = Mj for particular i and some j holds with

p < L/256. To be a valid padding, all N-L independent

equations must hold.

20. února 2013

Practical Configuration

� In one setup, we had N = 32, L = 20.

� So, there were in total 12 bytes of padding string.

ppadding < (L/256)N-L = (20/256)12 < 2-44

� In other words, if we try Q incorrect PIN guesses,

we can expect, in mean value,

E = Q*ppadding < Q*2-44

accidentally correct padding structures.

� This directly corresponds with the number of false

positives in a brute force searching for PIN.

20. února 2013

Information Needed

� Let the PIN be any value with a variable length

of r to s digits.

There are

� ��10�
�

��	

	10

��

9 	
 10���,��

possible PIN values.

For instance, r = 4, s = 8 gives W = 111 110 000.

Note that “1234” is not the same as “01234”.

20. února 2013

Information Conveyed

� When brute forcing r-to-s-digit PIN, we need

to verify no more than W incorrect PIN values.

So, we can expect to encounter, in mean value, at

most

E = W*ppadding < W*2-44 < W*10-13,2

false positives.

In particular, 4-to-13-digit PIN gives

W < 1013,05,

still leading to

E < 1.

20. února 2013

NP3 Failure

� We have seen that…

� …given one particular encrypted authentication

key, we could successfully brute force any PIN in

the range of 4 to 13 decimal digits.

� So, the PIN was again gracefully packed right

with the encrypted authentication key.

� …and the diligent attacker was happy again!

20. února 2013

Be Aware of OTPs

� If the PIN is involved in OTP generation, then any OTP
itself is a valuable PIN print.

� This is true even if the OTP is also based on some
symmetric key stored in the mobile device.

� Or, we have to prove the key cannot be retrieved by
respective forensic techniques.

� Therefore, we shall:
� not store OTPs in permanent memory,

� wipe OTPs out of the volatile memory as soon as possible,

� regardless whether they were already used or not.

20. února 2013

Wiping Issues

� Consider the HOTP according to RFC 4226.

� This is a popular OTP generator based on HMAC-
SHA-1.

� Its reference Java implementation (cf. RFC 4226),
however, contains a security flaw.

� OK, it is a reference design in the sense of test
vectors, which are correct.
� On the other hand, the RFC does not warn clearly that this code

shall not be used for real implementations.

� Especially on Android, it is probably tempting to simply copy-paste
the code. Do not do that!

20. února 2013

OTP Formatting by RFC 4226

20. února 2013

result = Integer.toString(otp);

while (result.length() < digits) {

result = "0" + result;

}

return result;

Secret Life of OTP Instances

� With each iteration, there are two new instances

created:

� (“+”) java.lang.StringBuffer or

StringBuilder to perform the concatenation,

� (“=”) java.lang.String to hold the result.

� However, the references to the previous iteration

result and to the concatenation instance are lost.

� So, we cannot wipe them even if we want to…

20. února 2013

Android Proof-Of-Concept

� We have compiled the original HOTP padding
procedure for Gingerbread.

� To exhibit the faulty behavior, we have
deliberately shortened the input integer, so we
were able to see the zero-padding in action.

� In particular, we set:

� otp = 755224,

� digits = 9.

20. února 2013

Dalvík Code View by IDA Pro

20. února 2013

Android Leakage Illustration

20. února 2013

1-2-3 Countermeasure

1. Avoid encrypting keys with intrinsic algebraic

redundancy.

� If you want RSA, think twice. In principle, RSA key

can be wrapped by other protocol (e.g. secret

sharing), but is it really worth it? Be careful about

the public key – it can also break NP3!

2. Avoid adding any “technical” redundancy.

� ASN.1, XML, padding, …

3. Avoid storing any PIN-based OTP.

� Regardless whether it was already used!

20. února 2013

Conclusion

� Two-factor authentication resistant against

After-Theft Attack is a doable adventure.

� It is a pity that ATA is still often ignored in practice.

� The key idea is a distributed implicit PIN

verification.

� Seems to be well-known approach.

� We shall, however, carefully verify the No PIN

Prints Postulate holds.

� Seems to be somehow lesser known in practice.

20. února 2013

16. února 2011

Tomáš Rosa, Ph.D.

http://crypto.hyperlink.cz

Děkujeme za pozornost.

? PROSTOR
PRO OTÁZKY

